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Stochastic One-Dimensional Lorentz Gas on a Lattice
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We study a one-dimensional stochastic Lorentz gas where a light particle moves
in a fixed array of nonidentical random scatterers arranged in a lattice. Each
scatterer is characterized by a random transmission�reflection coefficient. We
consider the case when the transmission coefficients of the scatterers are indepen-
dent identically distributed random variables. A symbolic program is presented
which generates the exact velocity autocorrelation function (VACF) in terms of
the moments of the transmission coefficients. The VACF is found for different
types of disorder for times up to 20 collision times. We then consider a specific
type of disorder: a two-state Lorentz gas in which two types of scatterers are
arranged randomly in a lattice. Then a lattice point is occupied by a scatterer
whose transmission coefficient is ' with probability p or '+= with probability
1& p. A perturbation expansion with respect to = is derived. The =2 term in this
expansion shows that the VACF oscillates with time, the period of oscillation
being twice the time of flight from one scatterer to its nearest neighbor. The
coarse-grained VACF decays for long times like t&3�2, which is similar to the
decay of the VACF of the random Lorentz gas with a single type of scatterer.
The perturbation results and the exact ones (found up to 20 collision times)
show good agreement.

KEY WORDS: Lorentz gas; random walks; disorder; Mathematica; symbolic
programming; velocity autocorrelation function; power law decay.

I. INTRODUCTION

In the deterministic Lorentz gas model a light particle moves between fixed
scatterers placed in a d-dimensional space. This model is widely used when
investigating diffusion phenomena. When identical spherical scatterers are
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distributed randomly in space and at low densities the velocity autocorrela-
tion function (VACF) of the light particle decays according to the power
law

(v(t) v(0)) tt&(d�2+1) (1.1)

This well known result and other long tailed memory effects related to the
Lorentz gas, have been investigated for nearly three decades.(1�12)

In the stochastic Lorentz gas the deterministic scattering law is
replaced by a stochastic one. In this model the light particle can be either
transmitted or reflected by a scatterer according to a simple probability
law. Grassberger(13) using perturbative and numerical analysis and van
Beijeren and Spohn(3, 14) using rigorous methods considered the stochastic
one-dimensional Lorentz gas with identical scatterers distributed randomly
on a line. This type of disorder will be called here space disorder. A theorem
of van Beijeren and Spohn(14) states that the VACF decays not faster
then t&3�2. It is important to remember that when the collisions are strong
(e.g., the transmission coefficient is 1�2), the 3�2 behavior was anticipated
already after fifteen or so mean collision times.(13, 14)

The van Beijeren�Spohn theorem(14) does not exclude the possibility
of oscillations. Olesky, (15) using numerical simulations, has observed an
oscillating VACF for a lattice version of this model. Then fast oscillations
found are due to the lattice structure and similar odd�even oscillations were
observed in numerical simulation of a stochastic Lorentz gas on a square
lattice by Binder and Frenkel.(16)

Lattice Lorentz gases are investigated(15�22) mainly due to their sim-
plicity and because they capture some of the essential features of non lattice
gases. Ernst et al.(23, 24) have investigated a one-dimensional Lorentz gas
with one type of scatterers distributed randomly on a lattice within mean
field theory approach. Using a dynamical partition function they have
estimated the chaotic dynamical properties of the system, such as Lyaponov
exponent and Kolmogorov�Sinai entropy. This venue of research is of a
particular interest since it relates between chaotic dynamical properties and
the transport coefficients, an issue developed by Gaspard and Nicolis.(7)

In Section II we give definitions and working tools with which a one-
dimensional stochastic Lorentz gas is studied. In this model scatterers are
arranged randomly on a lattice. The scatterer on site m is characterized by
its transmission coefficient Tm which is a random variable. Differently from
the previous works we do not assume that the lattice points are either
occupied or unoccupied, rather we consider the case when the Tm's are
distributed randomly in the interval (0, 1). Throughout the motion of the
light particle its kinetic energy is conserved and the disorder is static.
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For lattice Lorentz models one can find exact solutions by counting
trajectories and giving them the proper statistical weight. This is a cumber-
some task which can be carried out only for very short times. In Section III
we use the symbolic powers of Mathematica(25) to solve the model exactly
and find the VACF, the only assumption on the disorder is that the
scatterers transmission coefficients are independent identically distributed
random variables. The main limitation on such an exact approach is the
machine computation time and finite memory. We find the VACF for the
case when the light particle has encountered up to twenty collisions. When
collisions are strong, twenty collisions are sufficient to reduce the VACF by
a few orders of magnitude from its initial value. Our solution is then used
to investigate the behavior of the VACF for different types of disorder.
It might be a useful tool with which approximate solutions, found using
either analytical or numerical methods could be checked. In certain cases
our exact result can be used to find how long one has to wait until the
asymptotic behavior of the VACF is first observed.

In Section IV we investigate in greater detail the case where two types
of scatterers are arranged on the underlying lattice. This corresponds to a
random A&B alloy where sites are not equivalent. We call this type of
model the two state Lorentz gas (TSLG). With a probability p a lattice
point is occupied by a scatterer whose transmission coefficient is ' and with
probability 1& p it is occupied by a scatterer whose transmission coef-
ficient is '+=. We develop an = perturbation expansion. The lowest order
term in our expansion describes an ordered system with an effective trans-
mission coefficient T='+=(1& p) and reflection coefficient R=1&T
associated with each scatterer on the lattice. For this ordered case the
VACF decays exponentially with a rate constant which can become com-
plex. The =2 correction shows that the VACF oscillates, the period being
twice the time of flight from one scattering center to its nearest neighbor.
The amplitude of these oscillations decays as t&3�2; which is characteristic
of the VACF decay of a particle exhibiting Gaussian diffusion in quenched
environment in one-dimension. The exact and perturbative solutions are
compared and we find a good agreement between the two for times shorter
than twenty collision times.

II. STOCHASTIC ONE DIMENSIONAL LORENTZ GAS

For the stochastic one dimensional Lorentz gas a light particle runs
with a constant speed v>0, and makes instantaneous collisions with scat-
terers. We shall consider the case where the scatterers are arranged on
lattice with a lattice constant a (random walks on lattices are discussed in
ref. 26). The lattice sites are numbered (m=0, 1,..., M&1) and periodic
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boundary conditions are assumed. The probability of transmission at a
lattice point m is Tm and the reflection probability is Rm=1&Tm .

Let P+
m (t)[P&

m (t)] be the probability of finding at time t the light
particle with a velocity v [&v], on site m. The time {=a�v is the time it
takes the light particle to move from one lattice point to one of its two
nearest neighbors. We use the normalized initial condition

:
m

[P+
m (0)+P&

m (0)]=1 (2.1)

which means that we exclude the possibility of finding the light particle
at time t=0 in the intervals between the scatterers. Only when t=n{,
(n=0, 1, 2,...), may P\

m (t) get values different from zero. Below we shall use
{=1 meaning that t=n. The periodic boundary condition P\

m+M(n)=
P\

m (n) are applied.
The recursion relations for the stochastic Lorentz gas on a lattice are

P+
m (n+1)=TmP+

m&1(n)+Rm P&
m+1(n)

(2.2)
P&

m (n+1)=RmP+
m&1(n)+Tm P&

m+1(n)

The stationary solution of Eq. (2.2) satisfying P\
m (n+1)=P\

m (n) is
P\

m (n)=C, with C=1�(2M ) being a constant independent of the Tm

values. This constant is determined from the normalization condition

:
m

[P+
m (n)+P&

m (n)]=1

We recall that the properties of the discrete Fourier�Laplace trans-
forms(27) are well suited to deal with discrete space-time systems like in the
problem we consider here. Therefore we shall use the following mathematical
tools:

(a) The Fourier transform of P\
m (n) is

P\
q (n)= :

M&1

m=0

eiqmP\
m (n) (2.3)

where q=(2?l�M ) lies in the first Brilloin zone (1BZ), namely l=
&1

2M+1,..., 1
2 M.

(b) The orthogonality relations read

M&1 :
M&1

m=0

eim(q&q$)=$qq$ (2.4)
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and

M&1 :
q=1BZ

eiq( j&m)=$jm (2.5)

(c) The discrete Fourier�Laplace transform of P\
m (n) is defined as

P� \
q (z)= :

�

n=0

P\
q (n) z&n (2.6)

(d) The inverse discrete Laplace transform, also called(27) the inverse
z transform, reads

P\
q (n)=

1
2?i � P� \

q (z) zn&1 dz (2.7)

where the integration is carried out along a closed contour which encloses
all the singularities of P� \

q (z). Hence-forward the limits of the sums over m
and q will be dropped.

We shall now use these mathematical tools to find a formal solution
to the problem. Equations (2.2) are Fourier�Laplace transformed,

z[P� +
q (z)&P+

q (0)]=&:
q$

[L++
qq$ P� +

q$ (z)+L+&
qq$ P� &

q$ (z)]

and

z[P� &
q (z)&P&

q (0)]=&:
q$

[L&+
qq$ P� +

q$ (z)+L&&
qq$ P� &

q$ (z)] (2.8)

Here

L++
qq$ =&Tqq$eiq$, L+&

qq$ =&Rqq$e&iq$

(2.9)
L&&

qq$ =&Tqq$e&iq$, L&+
qq$ =&Rqq$eiq$

and

Tqq$=
1
M

:
m

ei(q&q$) mTm , Rqq$=
1
M

:
m

ei(q&q$) mRm (2.10)

Equation (2.8) can be written in matrix form as

(z+L) P� q(z)=zPq(0) (2.11)
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with

P� q(z)=\P� +
q (z)

P� &
q (z)+ , Pq(0)=\P+

q (0)
P&

q (0)+ (2.12)

and

L=\L++

L&+

L+&

L&&+ (2.13)

The formal solution of the problem is

(P� q(z)) =� z
z+L

Pq(0)� (2.14)

where the average ( } } } ) is over the random variable Tm . The nontrivial
task is to invert the matrix z+L and then average over the disorder.

There are techniques, used already in the context of hopping models
(solution of master equation) and developed by Zwanzig(28) and later by
Denteneer and Ernst, (29) that make under certain conditions the treatment
of equations of the type (2.14) possible. This venue will be followed in
Section IV. However first we turn to give the exact solution of the problem
using the symbolic programming approach.

III. EXACT SOLUTION��A SYMBOLIC PROGRAMMING
APPROACH

An exact solution for the Lorentz gas on a lattice for a broad class of
disorder can be expressed in terms of a symbolic program. We have used
Mathematica(25) to generate the exact solution for the problem for finite
times n. The only assumption we use is that the transmission coefficients
Tm are independent identically distributed random variables. In Appendix A
a symbolic program is given, with which the averaged over disorder VACF

(v(n) v(0) | v(0)=+1)=:
m

[(P+
m (n)) &(P&

m (n))] (3.1)

is found. The short program first solves the recursion relation Eq. (2.2) for
an array of random scatterers on a system of finite length. The VACF is
expressed in terms of P\

m (n) which depend in turn on [Tm]. It is then
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expanded in a power series depending on the transmission coefficients,
a characteristic term in this expansion being

C i1 ,..., in
m1 ,..., mn

(Tm1
) i1 } } } (Tmn

) in (3.2)

Here C i1 ,..., in
m1 ,..., mn

are constants, the integers (m1 ,..., mn) denoting the location
of the scatterers and (i1 ,..., in) being integers. Averaging over disorder is
carried out by the replacement (Tm) i � ( (Tm) i). Such a replacement is
justified since [Tm] are independent random variables. Since [Tm] are also
identically distributed ( (Tm) i) =(T i) is independent of the location m.
Hence the characteristic term, Eq. (3.2), is replaced by

C i1 ,..., in
m1 ,..., mn

(T i1) } } } (T in) (3.3)

In this way the exact solution is found for finite time.
Our program considers the case when the light particle is initially

located at the origin, and has a velocity equal to one directed to the right.
The maximal distance lmax , the light particle may travel during the time n
is lmax=n, and therefore if we compute the VACF for n time steps we
consider a lattice in the interval (&lmax , lmax). This means that we do not
use the periodic boundary conditions of the previous section, since, the
choice of boundary condition is unimportant when considering the system
for a finite time so that the particle cannot reach the boundaries.

Our results are shown in Table 1. For the sake of space we give our
results only for n�7. As mentioned, terms for n�20 were used and with
them the examples of the following subsection are worked out. The limita-
tion on the computation of higher order terms is the time of the computa-
tion and the finite memory of the computer.

A few expected features can be seen in Table 1. First when (T i)=0,
meaning that the system is composed of perfect reflectors, the VACF alter-
nates between the values +1 and &1. Then we notice that if (T i)=1 the
VACF is equal unity for all times as expected from a transmitting system.
If (T i) =1�2i then the VACF is equal zero for n�1 since then the particle
has the velocity +1 (or &1) with probability 1�2. The moments in the
solution cannot be higher than (T n�2) for even n and (T (n+1)�2) for odd n.

When n is even, trajectories of particles which encounter n�2 collisions
with the scatterer situated at m=1 are responsible for the terms which
depend on (T n�2). The 4(T n�2) 2 term is due to trajectories which bounce
back and forth between the scatterers at m=1 and m=0 or between the
scatterers at m=1 and m=2. Since n is even the particle at time n is
located at either m=0 or m=2 and since at this time the particle can get
velocity either +v or &v there are four possible such trajectories, which
explains the prefactor four.
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Table 1

n (v(n) v(0) | v(0)=+1)

0 1

1 &1+2(T)

2 1&4(T) +4(T) 2

3 &1+6(T)&8(T) 2+4(T 2) &4(T 2)+4(T)(T 2)

4 1&8(T) +16(T)2&8(T) 3+4(T) 4+8(T 2)
&24(T)(T 2) +8(T) 2 (T 2) +4(T 2)2

5 &1+10(T) &24(T) 2+20(T)3&8(T) 4+4(T) 5

&16(T 2) +52(T)(T 2) &40(T 2)(T 2)
+8(T) 3 (T 2) &16(T 2) 2+12(T)(T 2) 2+8(T 3)
&16(T)(T 3) +4(T) 2 (T 3) +4(T 2)(T 3)

6 1&12(T) +36(T) 2&32(T) 3+24(T) 4

&8(T) 5+4(T) 6+24(T 2) &112(T)(T 2)
+96(T)2 (T 2) &48(T)3 (T 2)+8(T) 4 (T 2) +56(T 2) 2

&56(T)(T 2) 2+24(T)2 (T 2)2

&16(T 3) +64(T)(T 3) &40(T) 2 (T 3) &40(T 2)(T 3)
+24(T)(T 2)(T 3) +4(T 3) 2

7 &1+14(T) &48(T) 2+56(T)3&40(T) 4+28(T) 5&8(T) 6+4(T) 7

&36(T 2) +184(T)(T 2) &224(T) 2 (T 2) +120(T) 3 (T 2)
&56(T)4 (T 2) +8(T) 5 (T 2) &120(T 2) 2+196(T)(T 2) 2

&96(T)2 (T 2) 2+28(T) 3 (T 2) 2&24(T 2) 3+12(T)(T 2)3+40(T 3)
&160(T)(T 3) +140(T) 2 (T 3) &32(T) 3 (T 3) +140(T 2)(T 3)
&160(T)(T 2)(T 3) +32(T) 2 (T 2)(T 3) +12(T 2)2 (T 3)
&24(T 3) 2+16(T)(T 3)2

&16(T 4) +48(T)(T 4) &24(T) 2 (T 4) &24(T 2)(T 4)
+12(T)(T 2)(T 4) +4(T 3)(T 4)

Calculation by means of Mathematica is not restricted to the VACF.
In fact it is easy to generate also the probability functions (P\

m (n)) as well
as other statistical characteristics of the system. Here we concentrate on the
VACF which is the main statistical function investigated in this work.

A. Examples

(a) As mentioned in the introduction, the two state Lorentz gas
(TSLG) is defined with two types of scatterers: Tm=' with probability p,
and Tm='+= with probability 1& p. Then using the identity

(T i)= p'i+(1& p)('+=) i (3.4)

it is easy to express the VACF presented in Table 1 in terms of =, p and '.
Note that Eq. (3.4) exhibits an exponential decay of (T i) with respect

332 Barkai and Fleurov



to i. We shall consider here the case ==1�25, '=12�25 and p=1�2. Since
for this case (T)=1�2, then the mean field approach in which the trans-
mission coefficients are replaced by the averaged value (i.e., take Tm=1�2
for all m) will guarantee that the VACF is zero after a single collision.
Since both ' and '+= are close to 1�2 the collisions can be considered
strong. Note that the term strong collision might be used for the case where
Tm=0, however for this case there is no relaxation of the VACF. Indeed
as we show in Fig. 1 the VACF decays from its initial condition to small
finite values, however not surprisingly, unlike the mean field approach the
VACF does not become zero after the first collision. Rather we observe a
slow 3�2 power law decay of the VACF (dashed line) with an oscillating
amplitude. This behavior will be explained in detail in Section IV.

So far we have considered the case where at time t=0 the particle is
situated on a lattice point. A more interesting situation, from a physical
point of view, is the case when the light particle is situated randomly on the
real line. At t=0 a set of scatterers (black dots) is given schematically by:

} } }
&2

v
&1

v
0
v b

1
v

2
v

3
v } } }

x0

and the light particle (open circle) is situated in the interval [0, 1]. The
distance x0 is defined to be the distance between the initial location of the
light particle and first scatterer on m=1 (even if T1=1). Now the VACF
(v(t) v(0) | v(0)=+1) x0

, for continuous time t, depends on the random
variable x0 , which is described by a probability density function

+(x0)={1,
0,

if x0<1
otherwise

(3.5)

meaning we are considering an equilibrium situation. Averaging the VACF
over initial conditions x0 it is straightforward to show

Av(v(t) v(0) | v(0)=+1) x0

=[1&[t&Int(t)]](v[Int(t)] v(0) | v(0)=+1)

+[t&Int(t)](v[Int(t)+1] v(0) | v(0)=+1) (3.6)

and Int(t) is the integer part of t. Since we can calculate (v[Int(t)] v(0) | v(0)
=+1) for Int[t]�20 using Mathematica (i.e., Table 1), we can find the
VACF Eq. (3.6) for times 0�t�20. For a graphic representation of
Av(v(t) v(0) | v(0)=+1) x0

as a function of time t, we need only to connect
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File: 822J 233810 . By:XX . Date:23:06:99 . Time:08:01 LOP8M. V8.B. Page 01:01
Codes: 2297 Signs: 1704 . Length: 44 pic 2 pts, 186 mm

Fig. 1. (v(n) v(0) | v(0)=+1) vs n for the TSLG model with '=12�25, p=1�2 and
==1�25. Not shown is the VACF for n=0 which is unity. The dashed line is the asymptotic
n&3�2 behavior, Eq. (4.44), which is valid only for odd n. For even n the VACF gets a small
value which is non-zero. Our program gives exact results with no numerical approximations.
For the discrete time n the straight lines are added to guide the eye. They also represent
Eq. (3.6), Av(v(t) v(0) | v(0)=+1) x0

as a function of the continuous time t.

the discrete points (v(n) v(0) | v(0)=+1) as done already in Fig. 1 and
the figures to follow. Thus the curves in these figures represent the con-
tinuous time solution after averaging over the initial location of the light
particle using Eq. (3.6), namely they show both the discrete time solutions
and Av(v(t) v(0) | v(0)=+1) x0

as a function of time t.
(b) The VACF for a uniform probability density function of trans-

mission coefficients is now considered. The moments in this case are given
by

(T i)=1�(i+1) (3.7)

exhibiting a power law decay with respect to i. The VACF for this case is
shown in Fig. 2. After twenty collisions the VACF decays to a value which
is roughly 10 of its initial value. It exhibits oscillations, their period being
twice the mean collision time. It is interesting to note that the amplitude
of these oscillations is not decaying monotonically, therefore a power law
decay is not suited to describe the behavior of the VACF, at least for the
time window we consider.

We compare the VACF found for the uniform model with the VACF of
the TSLG model with p=1�2, '=(6&2 - 3)�12 and ==- 3�3. Such a choice
of parameters ensures that for the TSLG model (T) =1�2, (T 2) =1�3
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File: 822J 233811 . By:XX . Date:04:08:99 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 2362 Signs: 1883 . Length: 44 pic 2 pts, 186 mm

Fig. 2. (v(n) v(0) | v(0)=+1) vs n for Tm 's which are independent identically distributed
random variables whose probability density function is uniform in (0, 1). One sees that for n
even and 4�n�20 the VACF is a non-monotonic function of time. Also when n is odd and
3�n�19 the VACF is non-monotonic, since (v(15) v(0) | v(0)=+1) <(v(13) v(0) | v(0)
=+1).

and (T 3) =1�4. Thus according to Eq. (3.7) for this choice of parameters
the first three moments of the Tms are identical for both distributions. The
VACFs for these two types of disorder are given in Table 2 together with
the ratio (v(n) v(0) | v(0)=+1)Uniform �(v(n) v(0) | v(0)=+1) TSLG . We
see that for each n the signs of the two VACFs are identical. One can also
see that for n�6 the two VACFs coincide, as can be anticipated, from
Table 1. However for 6<n<20 there are large deviations between the two
models. We also notice that the ratio is larger or equal to unity, indicating
that for the uniform probability density function the VACF decay is slower
than the decay of the TSLG VACF. This is probably due to the fact that
for i>3 the moments (T i) of the uniform distribution are larger than
those of the TSLG model for our special choice of parameters. The dif-
ference between the two models, shown in Table 2, implies that the infor-
mation contained in the first three moments of Tm is not sufficient to deter-
mine even approximately the behavior of the VACF.

The relatively slow decay of the VACF of the uniform model raises the
question if such a model exhibits normal Gaussian diffusion. It is an open
question under what conditions does a one-dimensional stochastic Lorentz
gas exhibit an anomalous diffusion with (x2) tt: and :{1. Such an
anomalous behavior may be expected to depend on the behavior of the
probability density function of the transmission coefficients near T=0.
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Table 2

n (v(n) v(0) | v(0)=+1) TSLG (v(n) v(0) | v(0)=+1) Uniform Ratio

0 1 1 1
1 0 0
2 0 0
3 &0.166666 &0.166667 1
4 0.027778 0.027778 1
5 &0.069444 &0.069444 1
6 0.006944 0.006944 1
7 &0.024306 &0.040972 1.68567
8 0.021798 0.034267 1.57202
9 &0.019194 &0.033453 1.74289

10 0.006221 0.008659 1.3919
11 &0.009299 &0.025681 2.76169
12 0.008971 0.021906 2.44187
13 &0.00712 &0.020120 2.82584
14 0.003824 0.008292 2.16841
15 &0.006447 &0.020686 3.20862
16 0.004135 0.014191 3.43192
17 &0.004551 &0.015501 3.40606
18 0.003150 0.008904 2.82667
19 &0.003883 &0.014504 3.73526
20 0.002501 0.010750 4.29828

One can quantify this assumption using Scher�Lax�Montroll (SLM)
approach(30�33) which has been used extensively to model transport in dis-
ordered media. The basic idea is to replace the disordered system by an
ordered one, with a suitably chosen waiting time probability density func-
tion �(t) and then analyze the random walk using the continuous time ran-
dom walk (CTRW). Using the SLM approach we consider a light particle
on m=0 with a velocity +1. The particle will escape the length interval
[0, 1] once it is transmitted through either the scatterer on m=0 or that
on m=1. Consider the paths for which the particle may escape only
through m=1. Then the probability the particle did not escape the interval
[0, 1] in the time interval [0, n] is Q(n)=(Rn�2

1 ) for even n. The CTRW
waiting time probability density function is �(n)=(d�dn) Q(n). Using this
function within the CTRW theory we find for the uniform density model
(x2) tn�Ln(n). Thus within this CTRW framework the stochastic Lorentz
gas with a uniform density of transmission coefficients exhibits a sub dif-
fusive behavior which is different from the normal behavior of the TSLG
and space disorder models. An even slower diffusion with (x2)tn: might
be expected for Lorentz systems with a probability density function of
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reflecting coefficients f (R) behaving like f (R)=:(1&R)&(1&:) and 0<
:<1. It is still left to be seen if such an anomalous behavior can be predicted
basing upon a rigorous approach.

(c) We now consider space disorder where with probability p a
lattice point is occupied by a scatterer with transmission coefficient ', and
with probability (1& p) it is vacant (i.e., Tm=1). This is a special case of
the TSLG when '+==1. Then

(T i) = p'i+(1& p). (3.8)

Unlike the moments of the uniform distribution Eq. (3.7) and the moments
of the TSLG model Eq. (3.4) (i.e., when '+={1), here we are dealing with
the situation where limi � � (T i) =(1& p) while for the other two models
limi � � (T i) =0.

This case is analyzed using the results obtained by van Beijeren and
Spohn.(14) Briefly, they have considered the stochastic Lorentz gas with
identical scatterers distributed randomly on the real line and examined the
case '=1�2. In this model time t is continuous. At time t=0 the particle
is randomly located on a line among the point scatterers (i.e., not
necessarily on a lattice point). Hence averages are over (a) initial condition
of the light particle and (b) random realizations of scatterers realizations
(i.e., the spatial disorder). van Beijeren and Spohn proved

Theorem. For given ; in the range 0<;<1�2

Av �|
�

0
exp(&ut)[v(t) v(0) | v(0)=+1] dt�x0

=
(!)2

2{
+(2u{)1�2 (!2)&(!) 2

4{
+O((u{)1&;) (3.9)

Here (!) and (!2) are the first and second moments of the distances
between the scatterers. {=(!) is the mean free time between collision
events and u is the usual Laplace variable. As mentioned in ref. 14 this
bound is too weak to prove an asymptotic power law decay of the VACF.
The theorem shows that the VACF decays not faster than t&3�2.

Assuming that oscillations vanish when t � � we inverse Laplace
transform Eq. (3.9), finding

Av(v(t) v(0) | v(0)=+1) x0
& &

1

4 - 2?

(!2)&(!) 2

{1�2 t&3�2 (3.10)
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This result might be expected to work well for large t and conjectured to
be observed after roughly fifteen collision times. We again remind the
reader that in ref. 14 the possibility of a superposition of oscillations was
not ruled out.

For scatterers on a lattice we have (!) =1�p and (!2)=(2& p)�p2

and therefore from Eq. (3.10)

Av(v(t) v(0) | v(0)=+1)x0
& &

(1& p)

4 - 2?( pt)3�2
(3.11)

Even though we expect to observe oscillations in the long time solution,
due to the underlying lattice structure, one may hope that this equation
describes well the decay of the amplitude of these oscillations, at least for
large times.

The asymptotic result Eq. (3.11) is shown in Fig. 3 together with our
exact result obtained using the symbolic programming approach, for the
special case p=199�200. This choice of p implies that after 20 time steps
the light particle has encountered on the average nearly twenty collisions.
We see in Fig. 3 that the VACF exhibits the characteristic oscillations
caused by the underlying lattice and found here already for two other

Fig. 3. (v(n) v(0) | v(0)=+1) vs n for space disorder where with probability 199�200,
Tm=1�2 and Tm=1 otherwise. The dashed curve is the n&3�2 behavior, Eq. (3.11). Notice that
even when the VACF has decayed five orders of magnitude from its initial value it is still not
monotonic its values for even n being above the dashed curve while values for even n lying
under it. Moreover, each of these values converge (if at all) to the asymptotics very slowly and
also not monotonically.
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models. One can also see from Fig. 3 that our VACF does not decay faster
than the van Beijeren�Spohn bound Eq. (3.11). However one may also
conclude that Eq. (3.11) is not a good approximation for the VACF, at
least for n�20. This does not mean that our result contradicts the van
Beijeren�Spohn theorem, Eq. (3.9), rather it implies that one cannot use
the Laplace u � t transform Eq. (3.10), to predict the asymptotic behavior
of the VACF.

All the examples in this subsection where calculated on the Challenge
R10000 Silicon Graphic computer at the computer center at Tel Aviv
university (for more details see ref. 34). For n=20 the CPU time was 53300
seconds, the maximum memory was 394 MB and maximum swap was
503 MB. For comparison a run with n=10, consumed only 21 seconds, the
maximum memory being 800 kB and maximum swap 3 MB.

Finally, Eq. (3.6) implies that oscillations found for the three discrete
time models exist also for a more realistic continuous time model, after
averaging correctly over initial conditions. We see that the VACF, for the
lattice Lorentz gas, is a non analytical function of time t (even so for all
times t, excluding t=n, second and higher time derivatives of the VACF
are equal to zero). Therefore asymptotic large t expansions, which assume
a smooth analytical behavior of the VACF, might fail. For lattice systems
it is therefore important to consider first the large and discrete n behavior
of the VACF, and only then use Eq. (3.6) to find the solution for large and
continuous time t. This approach is pursued in the following section which
considers the TSLG model.

IV. TWO STATE LORENTZ GAS

The two state Lorentz gas (TSLG), considers a light particle in a
random A-B alloy. It was discussed to some extent in subsection III A. The
model defines a probability p, that a lattice site is occupied by a scatterer
whose transmission coefficient is ' and the probability (1& p) for a scat-
terer whose transmission coefficient is ('+=). Since '+=�1 we obviously
have 0�=�1&'. The average transmission coefficient is

T='+=(1& p) (4.1)

and the average reflection coefficient is R=1&T. Defining the local devia-
tion from the mean value $Tm#Tm&T, we shall use a perturbative
expansion in the fluctuation $Tm , the zeroth order in this expansion being
the ordered system. The statistical properties of $Tm are determined by
($Tm)=0,

$2#( ($Tm)2) = p(1& p) =2 (4.2)
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and

( ($Tm) i) ==i[(&1) i p(1& p) i+ pi (1& p)] (4.3)

which is independent of '. Notice that $2=0 for three cases, either ==0,
or p=1, or p=0, all corresponding to ordered systems. For odd i and
p<1�2, ( ($Tm) i)�0, while for p>1�2, ( ($Tm) i) �0.

To derive the perturbation expansion, we use the mathematical tools
and results obtained in Section II, Eqs. (2.1)�(2.14). We rewrite Eq. (2.10)
as

Tqq$=T $qq$+($T )qq$
(4.4)

Rqq$=$qq$&Tqq$

where we use

($T )qq$#
1
M

:
m

ei(q&q$) m $Tm (4.5)

We find it useful to separate L into two parts, L#L0+2L, with

(L++
0 )qq$=[(L&&

0 )qq$]*=&T $qq$ eiq$

(4.6)
(L+&

0 )qq$=[(L&+
0 )qq$]*=&R $qq$e&iq$

[ } } } ]* means the complex conjugate of [ } } } ], and

(2L++)qq$=&($T )qq$ eiq$

(2L+&)qq$=($T )qq$ e&iq$

(4.7)
(2L&+)qq$=($T )qq$ eiq$

(2L&&)qq$=&($T )qq$ e&iq$

Notice that if the system is ordered then $Tm=0 and so 2L=0.
We use the matrix identity

(z+L0+2L)&1= :
�

k=0

(&1)k l&1
0 (z)_2L_l&1

0 (z) } } } 2L_l&1
0 (z) (4.8)

where

l&1
0 (z)#(z+L0)&1 (4.9)

340 Barkai and Fleurov



The kth term in the sum Eq. (4.8) contains k+1 multipliers of type l&1
0 (z)

and k multipliers of type 2L. Inserting the expansion Eq. (4.8) in the
formal solution Eq. (2.14) the exact solution can be expressed as a power
series

(P� q(z)) = :
�

k=0

(P� q(z)) k (4.10)

with

(P� q(z)) k=z(&1)k (*� k(z) l&1
0 (z) Pq(0)) (4.11)

and

*� (z)#l&1
0 _2L (4.12)

We shall assume that the initial conditions Pq(0) and the static disorder
(the random variables Tm) are statistically independent, so that

(P� q(z)) = :
�

k=0

(&1)k (*� k(z))(P� q(z)) 0 (4.13)

An important ingredient of our solution is the 2M_2M matrix (Green
function)

l&1
0 (z)=\l&1

0 (z)++

l&1
0 (z)&+

l&1
0 (z)+&

l&1
0 (z)� + (4.14)

given by

[l&1
0 (z)++]qq$=[l&1

0 (z)&&]*qq$=
(z&Te&iq)

f (q, z)
$qq$

(4.15)

[l&1
0 (z)+&]qq$=[l&1

0 (z)&+]*qq$=
Re&iq

f (q, z)
$qq$

where

f (q, z)=z2&2zT cos q+T&R (4.16)

Equation (4.15) can be verified easily by showing that l&1
0 (z)_(L0+z)

=$qq$ , with L0 defined in Eq. (4.6).
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An explicit expression for the propagator *� (z) is found using Eqs.
(4.7), (4.9) and (4.15)

[*� :;(z)]qq$=&(:;)
z&e&:iq

f (q, z)
$Tqq$ e;iq (4.17)

Here : and ; in the left hand side of the equation get the values + or &,
whereas in the right hand side they correspond to the values \1.

Below we shall investigate the VACF for the case when the light
particle velocity is initially directed to the right, implying

P+
q=0(0)=1, P&

q=0(0)=0 (4.18)

Then the VACF in z space is

(v̂(z) v(0) | v(0)=+1)=(P� +
q=0(z)) &(P� &

q=0(z)) (4.19)

Using our formal expansion:

(v̂(z) v(0) | v(0)=+1) = :
�

k=0

(v̂(z) v(0) | v(0)=+1) k (4.20)

where

(v̂(z) v(0) | v(0)=+1) k=(P� +
q=0(z)) k&(P� &

q=0(z)) k (4.21)

In a way similar to Eq. (4.20), expansions for the mean, mean square dis-
placement and higher moments of the displacement or the velocity correla-
tions can be written. However mainly the VACF will be considered below.

A. Ordered System

When the system is ordered the stochastic Lorentz model is an exam-
ple of a persistent random walk, (35) meaning that the jump probabilities
depend on the direction from which the particle has arrived. Even though
this case is rather trivial, we derive the following results for the sake of
completeness and in order to contrast between the ordered system and the
disordered one. Equation (4.30) is our main result relevant to the rest of
the work, it shows that for the ordered system the VACF decays exponen-
tially with time.

When fluctuations are neglected (i.e., 2L=0) we find

(P� +
q (z)) 0=z

P+
q (0)(z&Te&iq)+P&

q (0) Re&iq

z2&2Tz cos q+T&R
(4.22)
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and

(P� &
q (z)) 0=z

P+
q (0) Re iq+P&

q (0)(z&Te iq)

z2&2Tz cos q+T&R
(4.23)

It is possible to z � n transform Eqs. (4.22) and (4.23) using the inverse
transform Eq. (2.7) to find

(P+
q (n)) 0=

1

2 - T 2 cos2 q&(T&R)

_[[zn
+(z+&Te&iq)&zn

&(z�Te&iq)] P+
q (0)

+(zn
+&zn

&) Re&iqP&
q (0)] (4.24)

and

(P&
q (n)) 0=

1

2 - T 2 cos2 q&(T&R)

_[(zn
+&zn

&) Re iqP+
q (0)

+[zn
+(z+&Te iq)&zn

&(z� Teiq)] P&
q (0)] (4.25)

with

z\=T cos q\- T 2 cos2 q&(T&R) (4.26)

From this solution the moments (xk(n)) can be found in the usual way
(i.e., by differentiating the solution k times with respect to q and then
assigning q=0). It is then easy to show that the diffusion coefficient is
D0=T�(2R), or in terms of the original parameters of the model

D0=
'+(1& p) =

2[1&'&(1& p) =]
(4.27)

The probability that the light particle has a velocity \v, at a time n,
is (P\

q=0(n)) 0 . From Eqs. (4.24) and (4.25),

(P\
q=0(n)) 0= 1

2[[1+(T&R)n] P\
q=0(0)+[1&(T&R)n] P �

q=0(0)]
(4.28)
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For n � � and T{1, T{0 the equilibrium

lim
n � �

(P+
q=0(n)) 0= lim

n � �
(P&

q=0(n))0= 1
2 (4.29)

is reached for any normalized initial condition .
The initial condition Eq. (4.18) are now chosen. Then the VACF is

(v(n) v(0) | v(0)=+1) 0=(P+
q=0(n)) 0&(P&

q=0(n)) 0

=exp(&n�tRel) (4.30)

with

tRel#_ln
1

T&R&
&1

(4.31)

The relaxation time tRel=0 when T=R=1�2 meaning that after a single
collision event there is a probability 1�2 to find the light particle with initial
velocity is +1 with a velocity &1. That is why the instantaneous decay of
the VACF is of no surprise. An oscillatory type of behavior is found when
T<0.5. When T=0 and R=1 initial conditions do not decay and the real
part of the relaxation time is zero (pure oscillations). When T=1 the
relaxation time diverges as expected from a system with no reflection.

B. Lowest Order Contribution of Disorder

We shall now calculate the corrections to the zeroth order solution
due to disorder. Since (2L)=0, the (P� q(z)) 1 term appearing in Eq. (4.10),
which has a linear dependence on 2L, vanishes. We shall calculate the next
term in our expansion

(P� q(z)) 2=(*� 2(z))(P� q(z)) 0 (4.32)

For our calculation we use

($Tm $Tj) =$2 $mj (4.33)

where $2 is given in Eq. (4.2). In Fourier space Eq. (4.33) yields

($Tqq" $Tq"q$) =
$2

M
$qq$ (4.34)
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as can be easily proven using Eqs. (2.5) and (2.6). After some algebra, and
using Eqs. (4.16) and 4.17) we find

(*2(z)) ++ =[(*2(z)) &&]*=$2 z&e&iq

f (q, z)
h� (z) eiq $qq$

(4.35)

(*2(z)) +& =[(*2(z)) &+]*=&$2 z&e&iq

f (q, z)
h� (z) e&iq $qq$

where

h� (z)=
1
M

:
q

2[z cos q&1]
f (q, z)

(4.36)

Using Eqs. (4.32) and (4.35) we have

(P� +
q (z)) 2=

$2h� (z)(z&e&iq)
f (q, z)

[eiq(P� +
q (z))0&e&iq(P� &

q (z)) 0] (4.37)

with (P� \
q (z)) 0 given in Eqs. (4.22) and (4.23) and

(P� &
q (z)) 2=

$2h� (z)(z&eiq)
f (q, z)

[&eiq(P� +
q (z)) 0+e&iq(P� &

q (z)) 0] (4.38)

It follows from Eqs. (4.37) and (4.38) that

(P� +
q (z)) 2+(P� &

q (z)) 2

=$22i sin(q)
h� (z)

f (q, z)
[e iq(P� +

q (z)) 0&e&iq(P� &
q (z))0] (4.39)

Equations (4.37)�(4.39) make our main results so far. Using them we
will derive the $2 corrections to the VACF, Eq. (4.30). Notice that according
to Eq. (4.39)

(P� +
q=0(z)) 2+(P� &

q=0(z)) 2=0 (4.40)

and the $2 correction terms do not alter the normalization condition.
The second order correction to the VACF, Eq. (4.30), in z space, is

found using Eq. (4.21)

(v̂(z) v(0) | v(0)=+1) 2=
2$2zh� (z)
(z&2)2 (4.41)
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where we have defined 2#T&R. In the following two subsections we shall
investigate the z � n transformation of this function in some detail, and
compare this approximate solution with the exact solution found for
n�20.

1. Case T=R. We shall now consider the special case, T=R=1�2,
for which the exact z � n transformation, Eq. (2.7), of the VACF, Eq. (4.41),
is

(v(n) v(0) | v(0)=+1) 2=$2 2
i? �

1
M

:
q

z cos q&1
z&cos q

zn&3 dz (4.42)

Changing the order of the integration and the summation in this equation
we consider the thermodynamic limit, which means that we replace the
sum 1�M �q } } } by the integral (1�2?) �?

&? dq } } } . Some elementary integra-
tions then give

(v(n) v(0) | v(0)=+1)2={&4$2 1
2n&1 \ n&1

n&1�2+
1

n&2
n is odd, n{1

0 n is even

(4.43)

and (v(n=1) v(0) | v(0)=+1) 2=0. Using the Stirling approximation

n!&\n
e+

n

- 2?n

for n>>1 and odd

(v(n) v(0) | v(0)=+1) 2& &4$2 �2
?

n&3�2 (4.44)

showing the power law decay of the type found for the space disordered
Lorentz gas, Eq. (1.1).

We compare our result obtained here with the exact result obtained by
the symbolic programming approach, for parameters p=1�2, '=12�25 and
==1�25. The exact result for this case has been presented already in Fig. 1
where one can observe a fairly good agreement between the asymptotic
solution Eq. (4.44) (dashed line) and the exact solution for the times
10<n<20. Figure 4 shows the ratio between the exact VACF and the
approximate solution, Eq. (4.43), for n<20 and odd. There is a very good
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Fig. 4. Ratio of the exact VACF, Table 1, and the approximate solution obtained by means
of the perturbation theory.

agreement between the approximate and exact results. For even n the per-
turbation theory gives a vanishing VACF, while the exact result shows that
the VACF for even n is finite though very small compared to the VACF for
odd n.

2. Case T{R. A more general case when the averaged transmis-
sion and reflection probabilities are not necessarily equal to one half is now
considered. Taking the thermodynamic limit of Eq. (4.36) yields

h� (z)=
1
T _&1+� 1&z&2

1&22z&2& (4.45)

and using Eq. (4.41)

(v̂(z) v(0) | v(0)=+1) 2=
2$2

T
z&1

(1&2z&1)2 _&1+� 1&z&2

1&22z&2& (4.46)

Now according to the definition of the discrete Laplace z transformation
we have

(v̂(z) v(0) | v(0)=+1) 2= :
�

n=0

z&n(v(n) v(0) | v(0)=+1) 2 (4.47)
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To find the small n behavior of the VACF, Eq. (4.46) is expanded in
powers of z&1 around z&1=0. Then according to Eq. (4.47) the n th coef-
ficient in this expansion gives (v(n) v(0) | v(0)=+1) 2 . For small n it is
convenient to carry out the expansion using Mathematica(25) which
produces

T
2$2 (v̂(z) v(0) | v(0)=+1)2

=(&1�2+22�2) z&3+(&2+23) z&4

+(&1�8&722�4+1524�8) z&5+(&2�4&523�2+1125�4) z&6

+(&1�16&722�16&5524�16+6326�16) z&7

+(&2�8&523�8&3525�8+4127�8) z&8 } } } (4.48)

For different choices of &1<2<1 and for n�1000 we have found that
carrying out such expansions using Mathematica on a standard computer(34)

consumes a short time.
We have noticed [see Fig. 1] that the VACF decays as a power law

with an oscillating amplitude, the period of oscillations being two time
units. These fast oscillations are found when the large n behavior of the
VACF is investigated. For this aim we have calculated the z � n transfor-
mation of Eq. (4.46) in the limit of large n. In Appendix B we find the large
time behavior of the VACF, Eq. (4.46),

(v(n) v(0) | v(0)=+1)2t{
&$2 1

- 32?(TR)5

T&R
T

n&3�2,

&$2 1

- 32?(TR)5

T 2+R2

T
n&3�2,

if n is even

if n is odd

(4.49)

The characteristic 3�2 power law decay of the VACF, Eq. (1.1), found pre-
viously for the space disordered system is found here for TR{0. However
now oscillations are also found. As shown in Appendix B the asymptotic
behavior is expected to hold only for large times, n, satisfying

&n ln( |T&R| )>>1 (4.50)

If T � 1 or R � 1 these times are especially long.
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Figure 5 compares: (i) our exact results for the VACF presented in
Table 1, (ii) the perturbation theory result found using Eqs. (4.30), (4.47)
and (4.48), and (iii) the asymptotic result, Eq. (4.49). We use '=0.5,
p=0.5 and ==0.1 and consider the time window 0�n�20. This choice of
parameters implies that T=0.55 and $2=1�400. Due to a good agreement
between the approximate and the exact results the approximate values of
the VACF presented in Fig. 5 cannot be distinguished from the exact ones.
A closer look at the numerical data shows that deviations exist between
the exact and perturbation results. For odd n the average ratio (exact
VACF�perturbative VACF) is 0.994 while for even n this ratio is 0.942.

In Fig. 5 one can also see that already after fifteen collisions the
asymptotic results converge to the exact ones. For n�10 we have fitted(25)

the exact results for the VACF with an n&3�2 behavior. For odd n we find
(v(n) v(0) | v(0)=+1)&&0.00774n&3�2 while for even n we find (v(n) v(0) | v(0)
=+1) & &0.00195n&3�2. These fittings are expected to work well when
n � �. They are compared with the asymptotic behavior of the VACF
calculated using the perturbation theory. Using Eq. (4.49), we find for odd
n, (v(n) v(0) | v(0)=+1) t &0.00751n&3�2 and for even n, (v(n) v(0) | v(0)
=+1) t&0.00149n&3�2. Thus for odd n the two results are in fairly good
agreement even though 10�n�20. For larger n we expect to find an even
better fit between the exact results and the asymptotic n&3�2 behavior,
Eq. (4.49).

Fig. 5. Time dependence of the exact result (v(n) v(0) | v(0)=+1) , perturbation theory
result (v(n) v(0) | v(0)=+1)0+(v(n) v(0) | v(0)=+1) 2 , and asymptotic expressions (dashed
curves) Eq. (4.49).
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Fig. 6. Plot of n3�2(v(n) v(0) | v(0)=+1)2 vs n for the parameters: '=0.5, p=0.5 and
==0.1. The straight curves are the asymptotic results Eq. (4.49).

Figures 6 and 7 show n3�2(v(n) v(0) | v(0)=+1) 2 vs n. These figures
demonstrate how (v(n) v(0) | v(0)=+1) 2 converges to its asymptotic
behavior, Eq. (4.49). To obtain n3�2(v(n) v(0) | v(0)=+1) 2 we have expanded
(v̂(z) v(0) | v(0)=+1) 2 in powers of z&1 as was done in Eq. (4.48). Also
shown in the two figures are the asymptotic results for odd and even n,
Eq. (4.49). In Fig. 6 where T=0.55 one sees a swift convergence of the
values obtained by the series expansion to the asymptotic result for n�
1000. In Fig. 7 we choose T=0.925 and there the convergence to the

Fig. 7. The same as Fig. 6 with parameters '=0.9, p=0.5 and ==0.05, meaning T=0.925.
Notice that the convergence of the small n expansion to the asymptotic result is slower than
that shown in Fig. 6.
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asymptotic behavior is much slower. This slow convergence is expected
when either T � 1 or R � 1.

The oscillations found in Eq. (4.49) are very fast since their period is
only twice the shortest time scale of the problem (i.e., the flight time from
one lattice point to its nearest neighbor). An interesting quantity is the
coarse grained VACF defined

(v(n+1�2) v(0) | v(0)=+1) 2

=
1
2

[(v(n+1) v(0) | v(0)=+1)2+(v(n) v(0) | v(0)=+1) 2]

t&$2 1
4R - 2?(TR)3 n&3�2 (4.51)

The VACF fluctuates around this averaged value. In terms of the original
parameters of the problem

(v(n+1�2) v(0) | v(0)=+1)2

t&=2p(1& p)
1

4 - 2?
[['+=(1& p)]3 [1&'&=(1& p)]5]&1�2 n&3�2

(4.52)

It is easy to see that when

'>>=(1& p) and 1&'>>=(1& p) (4.53)

(v(n+1�2) v(0) | v(0)=+1) 2

t&=2p(1& p)
1

4 - 2?
['3(1&')5]&3�2 n&3�2+o(=3) (4.54)

This equation shows a quadratic dependence of the VACF on the small
parameter =. However, when ' � 0 or ' � 1 Eq. (4.54) is not valid and a
more careful investigation of the small = behavior of the VACF is needed.

We define '=1&B1= and find from the condition 0�'+=�1 that
1�B1�1�=. For this representation of parameters T=1&=(B1&1+ p).
Then when =(B1&1+ p)<<1 (the system is nearly transparent) we find

(v(n+1�2) v(0) | v(0)=+1) 2

t&=&1�2p(1& p)_
1

4 - 2?
(B1&1+ p)&5�2 n&3�2 (4.55)
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We see that the VACF diverges as = � 0 (we assume p&1�2) and our
expansion is not valid for this case.

In a similar way we define '=B0 = and from the condition 0�
'+=�1 we find 0�B0�1�=&1. The transmission coefficient is now
T==(B0+1& p) and for small B0 and = the system is nearly reflecting. We
assume =(B0+1& p)<<1 and then find that

(v(n+1�2) v(0) | v(0)=+1) 2

t&=1�2p(1& p)_
1

4 - 2?
(B0+1& p)&3�2 n&3�2 (4.56)

For this case the second order corrections to the VACF is non-diverging.

V. SUMMARY AND DISCUSSION

We have used a symbolic programming approach to find exact results
for the one-dimensional Lorentz gas on a lattice for the case when the
transmission coefficients [Tm] are independent identically distributed ran-
dom variables. It is quite practical to compute this exact solution for times
n�20. When all lattice points are occupied by scatterers this means that
each particle has encountered twenty collisions. When collisions are strong
twenty collisions are sufficient to reduce the VACF by a few orders of
magnitudes.

We have found for three models of disorder (i.e., TSLG, space and
uniform disorders) characteristic fast oscillations of the VACF. These
oscillations are due to the fact that the scatterers are placed on a lattice.
Our main concern was lattice Lorentz gas were both space and time are
discrete (this enables a relatively simple solution in terms of the Mathe-
matica program). We showed in Eq. (3.6), how to use the discrete solution
to obtain the VACF for continuous time where the light particle is initially
located randomly on the real line (i.e., not necessarily on a lattice point).
Averaging over this more realistic initial condition we still find an oscillating
VACF which is not a smooth function of time.

For the TSLG model (random A-B alloy) we have found a good
agreement between exact results and those computed by the = perturbation
theory. For the case of n even and T=R the second order perturbation
theory gives a VACF which equals zero, while the exact result shows that
the VACF is finite though small compared to its values for odd n. For
some choices of parameters, symbolic programming can be used to begin
and explore the asymptotic long time behavior of the lattice Lorentz gas.
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Using the perturbation theory we have found that the TSLG exhibits
a 3�2 power decay. The discrete time perturbation theory exhibits two dif-
ferent types of 3�2 decay the first for n odd and the second for n even [as
predicted in Eq. (4.49)]. After finding the large n discrete time solution for
even and odd n one may investigate the large continuous t behavior of an
ensemble of light particles distributed at time t=0 randomly on the real
line. This is done simply by connecting (with a straight line) the values of
the discrete VACF for Int(t) and Int(t)+1 (i.e., the VACF, for lattice
systems is a non-analytical function of time, even after averaging over equi-
librium initial conditions). As a consequence asymptotic large t expansions
of the VACF for continuous time t, which assume a smooth analytical
behavior of the VACF for large times in the first place, might lead to wrong
conclusions. Such a non analytical behavior is not expected to be found for
scatterers distributed randomly on the real line, the random intervals
between them described by an exponential distribution.

In our perturbation expansion, = is a small parameter. One could have
considered other parameters as being small [e.g., p or (1& p)]. However
we realize that such density expansions are very different from ours.(13) To
see this consider the fluctuation $Tm around the average transmission coef-
ficient. In our expansion we have neglected terms of the order ( ($Tm) i)
with i>2. According to Eq. (4.3) for small =, ( ($Tm) i) t=i while for
small p, ( ($Tm) i)tp Hence for our = expansion it is reasonable to neglect
the ( ($Tm) i) with i>2 corrections provided that = is small. For a similar
expansion in p one will have to sum an infinite number of terms to collect
all the linear in p terms. In this sense the p expansion and the = expansion
are very different and here we have considered simpler case.

As mentioned, in this work we have analyzed with detail the odd�even
oscillations. One should remember that another type of slower oscillations
can also be observed. These oscillations are predicted already within the
mean field approximation Eq. (4.30).

Using our exact results we have compared between the dynamics of
the light particle in different types of disorder. We have shown that when
the transmission coefficients Tm are independent identically distributed ran-
dom variables the information contained within the first three moments of
Tm is not sufficient to determine the VACF beyond the time n=6. When
comparing between two models of quenched disorder (i.e., the TSLG and
the uniform disorder models) we saw large deviations between the two
models, for 6<n�20, even though (Tm) , (T 2

m) and (T 3
m) , were chosen

identical for both models (in this case the uniform model exhibits a much
slower decay of the VACF than the TSLG model). Hence there is a need
for information on higher order moments, to determine correctly the long
time behavior of the VACF.
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We have used a CTRW argument to predict a sub diffusive behavior
for the Lorentz gas model with a uniform distribution of transmission coef-
ficients. More rigorous methods are needed to determine if such an
anomalous behavior describes correctly the transport properties of the light
particle.

Finally, we believe that symbolic programming can be used to
investigate other interesting dynamics on quenched disorder. For example
the lattice Lorentz gas in dimensions higher than one or the discrete time
random walk in a random environment.

APPENDIX A. SYMBOLIC PROGRAM

The Mathematica program generates the VACF for ten time steps.
The generalization to longer times is straightforward.

c
c Initial conditions and input data are set:
c
n=10
l=n+2
pp[0, 0]=1
Do[ pp[0, m]=0, [m, 1, l]]
Do[ pp[0, m]=0, [m, &l, &1]]
Do[ pm[0, m]=0, [m, &l, l]]
c
c Solve recursion relations for arbitrary disorder
c
Do[
[ pp[i, m]= pp[i&1, m&1] t[m]+ pm[i&1, m+1](1&t[m]),
pm[i, m]= pp[i&1, m&1](1&t[m])+ pm[i&1, m+1] t[m],
pp[i, l]=0,
pp[i, &l]=0,
pm[i, l]=0,
pm[i, &l]=0],
[i, 1, l],
[m, &l+1, l&1]]
c
c The VACF
c
Do[va[i]=Sum[pp[i, m]&pm[i, m], [m, -l, l]], [i, 1, n]]
c
c Average over disorder
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c
Do[vaEx[i]=Expand[va[i]], [i, n]]
Do[u[i]=vaEx[i]�.[x&

5&>T[5], x&
4& >T[4],

x&
3&>T[3], x&

2&>T[2]], [i, 1, n]]
Do[t[m]=T[1], [m, &n, n]]
c
c The output, the average VACF
c
Do[Write[``VACF.exact", u[i], i], [i, 1, n]]

APPENDIX B. ASYMPTOTIC BEHAVIOR OF VACF

It is our aim here to find the z � n transformation of Eq. (4.46) in the
limit of large n. First we consider the first term in the right hand side of
Eq. (4.46). The term

Z&1[z&1�(1&2z&1)2]=n2n&1

(Z&1 is the inverse z transform) is neglected since for long times it is much
smaller than the contribution of the second term in Eq. (4.46) (the term
with the square root) which as we show now decays as a power of n.

To convert the VACF we use the Fourier integral [see Eq. (37.8)
p. 161 in ref. 27]

(v(n) v(0) | v(0)=+1)2=
1

2? |
?

&?
(v̂(z=rei,) v(0) | v(0)=+1) 2 rnein, d,

(B.1)

here r>R with R being the radius of a circle which encloses all the
singularities of the function (v̂(z) v(0) | v(0)=+1) 2 . A simple analysis of
the singularities shows that r>1. Using Eqs. (4.46) and (B.1)

(v(n) v(0) | v(0)=+1) 2

=
2$2

?T
Re _|

?

0

1�re&i,

(1&2�re&i,)2 � 1&1�r2e&2i,

1&22�r2e&2i, rne in, d,& (B.2)

We define 1�r#exp(&+) with + being real, positive and small. Then we
change the integration variable , to !=,&i+ and find

(v(n) v(0) | v(0)=+1)2=
2$2

?T
Re _|

?&i+

&i+

e&i!

(1&2e&i!)2 � 1&e&2i!

1&22e&2i! ein! d!&
(B.3)
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File: 822J 233832 . By:XX . Date:23:06:99 . Time:08:02 LOP8M. V8.B. Page 01:01
Codes: 1604 Signs: 744 . Length: 44 pic 2 pts, 186 mm

Fig. 8. The integration contour which helps to demonstrate the equivalence of Eq. (B.3) and
Eq. (B.4). The arcs around (0, 0) and (0, ?) have a radius + � 0.

We now close the integration path, as shown in Fig. 8, along the real and
positive axis in the ! plane excluding the branching points at !=0 and
!=?. The contributions from the integrations along the arcs around the
branching points [see Fig. 9] are negligible in the limit + � 0. We therefore
have

(v(n) v(0) | v(0)=+1) 2=&
2$2

?T
Re _|

?&+

+
F(!) ein! d!& (B.4)

with + � 0+ and

F(!)=
e&i!

(1&2e&i!)2 � 1&e&2i!

1&22e&2i! (B.5)

We now consider the integral

C=� F(!) ein! d! (B.6)

Fig. 9. The integration contour in the ! plane along which the integral Eq. (B.6) is
calculated. The arcs C1 and C3 have radius +.
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along the contour shown in Fig. 9. The integration path is chosen in such
a way that all singular points are outside the contour meaning that !0

defined in Fig. 9 satisfies the condition !0< &ln |2| and hence C=0. As
can be seen from Fig. 9

C= :
6

i=1

Ci (B.7)

with

C1=i |
0

?�2
F(+e i%) exp(in+ei%) +ei% d%

\2$2

?T+ Re[C2]=&(v(n) v(0) | v(0)=+1) 2

C3=i |
?�2

?
F(?++ei%) exp(in+ein%) +ei% d%

(B.8)

C4=i |
!0

+
F(?+iy) ein(?+iy) dy

C5=|
0

?
F(x+i!0) ein(x+i!0) dx

C6=i |
+

!0

F(iy) e&ny dy

It is easy to show that lim+ � 0 C1=lim+ � 0 C3=0. When n � � the term
C5 gives only an exponentially small contribution of the order of e&n!0 and
hence for large times can be neglected. The condition for such an
approximation to be valid is !0n>>1 from which we find Eq. (4.50).

The integrals are calculated using

C4=i |
!0

+

e&i(?+iy)

[1&2e&i(?+iy)]2 �e&2i?&e&2i(?+iy)

1&22e&2i(?+iy) ein(?+iy) dy

t
&ei?n

(1+2)2 (1&22)1�2 n&3�2 |
n!0

n+
- 2x e&x dx (B.9)

357Stochastic One-Dimensional Lorentz Gas on a Lattice



We continue with our approximation and take the lower limit in the
integral to be zero and the upper limit to infinity, then

C4t &
ei?n

- 2 1 (3�2)
(1+2)2 (1&22)1�2 n&3�2 (B.10)

Using the same considerations

C6t
- 2 1 (3�2)

(1&2)2 (1&22)1�2 n&3�2 (B.11)

We now use Eqs. (B.7) and (B.8) and the identities

1+22

(1&22)5�2=
2(T 2+R2)
(4RT )5�2

and

22
(1&22)5�2=

2(T&R)
(4RT )5�2

to find Eq. (4.49).

REFERENCES

1. M. H. Ernst and A. Weyland, Phys. Lett. 34A:39 (1971).
2. L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys. 78:479 (1981).
3. H. van Beijeren, Rev. Mod. Phys. 54:195 (1982).
4. J. Machta and R. Zwanzig, Phys. Rev. Let. 50:1959 (1983).
5. J. P. Bouchaud and P. Le Doussal, J. of Stat. Phys. 41:225 (1985).
6. A. Zacharel, T. Geisel, J. Nierwetberg, and G. Radons, Phys. Let. A. 114:315 (1986).
7. P. Gaspard and G. Nicolis, Phys. Rev. Let. 65:1693 (1990).
8. P. M. Bleher, J. of Stat. Phys. 66:315 (1992).
9. H. van Beijeren and J. R. Dorfman, Phys. Rev. Let. 74:4412 (1995).

10. Matsuoka and R. F. Martin, J. of Stat. Phys. 88:81 (1997).
11. P. Levitz, Europhys. Lett. 39:593 (1997).
12. E. Barkai, V. Fleurov, and J. Klafter (1998), submitted.
13. P. Grassberger, Physica A 103:558 (1980).
14. H. van Beijeren and H. Spohn, J. Stat. Phys. 31:231 (1983).
15. C. Olesky, J. Phys. A. Math. Gen. 23:1275 (1990).
16. P. M. Binder and D. Frenkel, Phys. Rev. A. 42:2463 (1990).
17. C. B. Briozzo, C. E. Budde, and M. O. Caceres, Physica A. 160:225 (1989).
18. J. M. F. Gunn and M. Ortun~ o, J. Phys. A. Math. 18:1095 (1985).
19. M. H. Ernst and G. A. van Velzen, J. Stat. Phys. 57:455 (1989).
20. H. van Beijeren and M. H. Ernst, J. Stat. Phys. 70:793 (1993).
21. E. G. D. Cohen and F. Wang, J. Stat. Phys. 81:445 (1995).

358 Barkai and Fleurov



22. F. Wang and E. G. D. Cohen, J. Stat. Phys. 81:467 (1995).
23. M. H. Ernst, J. R. Dorfman, R. Nix, and D. Jacobs, Phys. Rev. Let. 74:4416 (1995).
24. C. Apert, C. Bokel, J. R. Dorfman, and M. H. Ernst, Physica D 103:357 (1997).
25. S. Wolfram, Mathematica A System for Doing Mathematics by Computer (Addison�Wesley

Publishing Company, Inc., New York, Amsterdam, Tokyo 1988).
26. J. W. Haus and K. W. Kehr, Physics Report 150:263 (1987).
27. G. Doetch, Guide to the Applications of the Laplace and Z transforms (Van Nostrand

Reinhold Company, London, 1971).
28. R. Zwanzig, J. Stat. Phys. 28:127 (1982).
29. P. J. H. Denteneer and M. H. Ernst, Phys. Rev. B 29:1755 (1984).
30. H. Scher and M. Lax, Phys. Rev. B 7:4491 (1973).
31. H. Scher and M. Lax, Phys. Rev. B 7:4502 (1973).
32. H. Scher and E. W. Montroll, Phys. Rev. B 12:2455 (1975).
33. G. H. Weiss, Aspects and Applications of the Random Walk (North Holland, Amsterdam,

1994).
34. http:��www.tau.ac.il:81�cc�
35. J. W. Haus and K. W. Kehr, J. Phys. Chem. Solids 40:1019 (1979).

359Stochastic One-Dimensional Lorentz Gas on a Lattice


